Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(8000): 905-911, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355794

RESUMO

High-intensity femtosecond pulses from an X-ray free-electron laser enable pump-probe experiments for the investigation of electronic and nuclear changes during light-induced reactions. On timescales ranging from femtoseconds to milliseconds and for a variety of biological systems, time-resolved serial femtosecond crystallography (TR-SFX) has provided detailed structural data for light-induced isomerization, breakage or formation of chemical bonds and electron transfer1,2. However, all ultrafast TR-SFX studies to date have employed such high pump laser energies that nominally several photons were absorbed per chromophore3-17. As multiphoton absorption may force the protein response into non-physiological pathways, it is of great concern18,19 whether this experimental approach20 allows valid conclusions to be drawn vis-à-vis biologically relevant single-photon-induced reactions18,19. Here we describe ultrafast pump-probe SFX experiments on the photodissociation of carboxymyoglobin, showing that different pump laser fluences yield markedly different results. In particular, the dynamics of structural changes and observed indicators of the mechanistically important coherent oscillations of the Fe-CO bond distance (predicted by recent quantum wavepacket dynamics21) are seen to depend strongly on pump laser energy, in line with quantum chemical analysis. Our results confirm both the feasibility and necessity of performing ultrafast TR-SFX pump-probe experiments in the linear photoexcitation regime. We consider this to be a starting point for reassessing both the design and the interpretation of ultrafast TR-SFX pump-probe experiments20 such that mechanistically relevant insight emerges.


Assuntos
Artefatos , Lasers , Mioglobina , Cristalografia/instrumentação , Cristalografia/métodos , Elétrons , Mioglobina/química , Mioglobina/metabolismo , Mioglobina/efeitos da radiação , Fótons , Conformação Proteica/efeitos da radiação , Teoria Quântica , Raios X
2.
Chemphyschem ; 23(19): e202200192, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35959919

RESUMO

Reversibly photoswitchable fluorescent proteins are essential markers for advanced biological imaging, and optimization of their photophysical properties underlies improved performance and novel applications. Here we establish a link between photoswitching contrast, one of the key parameters that dictate the achievable resolution in nanoscopy applications, and chromophore conformation in the non-fluorescent state of rsEGFP2, a widely employed label in REversible Saturable OpticaL Fluorescence Transitions (RESOLFT) microscopy. Upon illumination, the cis chromophore of rsEGFP2 isomerizes to two distinct off-state conformations, trans1 and trans2, located on either side of the V151 side chain. Reducing or enlarging the side chain at this position (V151A and V151L variants) leads to single off-state conformations that exhibit higher and lower switching contrast, respectively, compared to the rsEGFP2 parent. The combination of structural information obtained by serial femtosecond crystallography with high-level quantum chemical calculations and with spectroscopic and photophysical data determined in vitro suggests that the changes in switching contrast arise from blue- and red-shifts of the absorption bands associated to trans1 and trans2, respectively. Thus, due to elimination of trans2, the V151A variants of rsEGFP2 and its superfolding variant rsFolder2 display a more than two-fold higher switching contrast than their respective parent proteins, both in vitro and in E. coli cells. The application of the rsFolder2-V151A variant is demonstrated in RESOLFT nanoscopy. Our study rationalizes the connection between structural and photophysical chromophore properties and suggests a means to rationally improve fluorescent proteins for nanoscopy applications.


Assuntos
Escherichia coli , Microscopia , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde , Proteínas Luminescentes/química
3.
Drug Discov Today Technol ; 39: 101-110, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34906320

RESUMO

X-ray crystallography has provided the vast majority of three-dimensional macromolecular structures. Most of these are high-resolution structures that enable a detailed understanding of the underlying molecular mechanisms. The standardized workflows and robust infrastructure of synchrotron-based macromolecular crystallography (MX) offer the high throughput essential to cost-conscious investigations in structure- and fragment-based drug discovery. Nonetheless conventional MX is limited by fundamental bottlenecks, in particular X-ray radiation damage, which limits the amount of data extractable from a crystal. While this limit can in principle be circumvented by using larger crystals, crystals of the requisite size often cannot be obtained in sufficient quality. That is especially true for membrane protein crystals, which constitute the majority of current drug targets. This conventional paradigm for MX-suitable samples changed dramatically with the advent of serial femtosecond crystallography (SFX) based on the ultra-short and extremely intense X-ray pulses of X-ray Free-Electron Lasers. SFX provides high-resolution structures from tiny crystals and does so with uniquely low levels of radiation damage. This has yielded a number of novel structures for G-protein coupled receptors, one of the most relevant membrane protein superfamilies for drug discovery, as well as tantalizing advances in time-resolved crystallography that elucidate protein dynamics. This article attempts to map the potential of SFX for drug discovery, while providing the reader with an overview of the yet remaining technical challenges associated with such a novel technique as SFX.


Assuntos
Elétrons , Lasers , Cristalografia por Raios X , Descoberta de Drogas , Raios X
4.
Nat Commun ; 12(1): 1672, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723266

RESUMO

X-ray free-electron lasers (XFELs) enable obtaining novel insights in structural biology. The recently available MHz repetition rate XFELs allow full data sets to be collected in shorter time and can also decrease sample consumption. However, the microsecond spacing of MHz XFEL pulses raises new challenges, including possible sample damage induced by shock waves that are launched by preceding pulses in the sample-carrying jet. We explored this matter with an X-ray-pump/X-ray-probe experiment employing haemoglobin microcrystals transported via a liquid jet into the XFEL beam. Diffraction data were collected using a shock-wave-free single-pulse scheme as well as the dual-pulse pump-probe scheme. The latter, relative to the former, reveals significant degradation of crystal hit rate, diffraction resolution and data quality. Crystal structures extracted from the two data sets also differ. Since our pump-probe attributes were chosen to emulate EuXFEL operation at its 4.5 MHz maximum pulse rate, this prompts concern about such data collection.


Assuntos
Hemoglobinas/química , Hemoglobinas/efeitos da radiação , Injeções a Jato/métodos , Lasers , Cristalografia por Raios X , Elétrons , Humanos , Injeções a Jato/instrumentação , Técnicas de Sonda Molecular , Raios X
5.
Nat Methods ; 17(7): 681-684, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32451477

RESUMO

Time-resolved crystallography with X-ray free-electron lasers enables structural characterization of light-induced reactions on ultrafast timescales. To be biologically and chemically relevant, such studies must be carried out in an appropriate photoexcitation regime to avoid multiphoton artifacts, a common issue in recent studies. We describe numerical and experimental approaches to determine how many photons are needed for single-photon excitation in microcrystals, taking into account losses by scattering.


Assuntos
Cristalografia por Raios X/métodos , Fótons , Radiação Eletromagnética , Lasers , Luz , Espalhamento de Radiação
6.
Nat Commun ; 11(1): 741, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029745

RESUMO

Reversibly switchable fluorescent proteins (RSFPs) serve as markers in advanced fluorescence imaging. Photoswitching from a non-fluorescent off-state to a fluorescent on-state involves trans-to-cis chromophore isomerization and proton transfer. Whereas excited-state events on the ps timescale have been structurally characterized, conformational changes on slower timescales remain elusive. Here we describe the off-to-on photoswitching mechanism in the RSFP rsEGFP2 by using a combination of time-resolved serial crystallography at an X-ray free-electron laser and ns-resolved pump-probe UV-visible spectroscopy. Ten ns after photoexcitation, the crystal structure features a chromophore that isomerized from trans to cis but the surrounding pocket features conformational differences compared to the final on-state. Spectroscopy identifies the chromophore in this ground-state photo-intermediate as being protonated. Deprotonation then occurs on the µs timescale and correlates with a conformational change of the conserved neighbouring histidine. Together with a previous excited-state study, our data allow establishing a detailed mechanism of off-to-on photoswitching in rsEGFP2.

7.
Nat Commun ; 10(1): 3177, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320619

RESUMO

Bacteriorhodopsin (bR) is a light-driven proton pump. The primary photochemical event upon light absorption is isomerization of the retinal chromophore. Here we used time-resolved crystallography at an X-ray free-electron laser to follow the structural changes in multiphoton-excited bR from 250 femtoseconds to 10 picoseconds. Quantum chemistry and ultrafast spectroscopy were used to identify a sequential two-photon absorption process, leading to excitation of a tryptophan residue flanking the retinal chromophore, as a first manifestation of multiphoton effects. We resolve distinct stages in the structural dynamics of the all-trans retinal in photoexcited bR to a highly twisted 13-cis conformation. Other active site sub-picosecond rearrangements include correlated vibrational motions of the electronically excited retinal chromophore, the surrounding amino acids and water molecules as well as their hydrogen bonding network. These results show that this extended photo-active network forms an electronically and vibrationally coupled system in bR, and most likely in all retinal proteins.


Assuntos
Bacteriorodopsinas/química , Halobacterium salinarum/metabolismo , Retinaldeído/química , Cristalografia , Isomerismo , Luz , Fótons , Conformação Proteica , Análise Espectral , Água/química
8.
Sci Data ; 6(1): 18, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944333

RESUMO

We provide a detailed description of a serial femtosecond crystallography (SFX) dataset collected at the European X-ray free-electron laser facility (EuXFEL). The EuXFEL is the first high repetition rate XFEL delivering MHz X-ray pulse trains at 10 Hz. The short spacing (<1 µs) between pulses requires fast flowing microjets for sample injection and high frame rate detectors. A data set was recorded of a microcrystalline mixture of at least three different jack bean proteins (urease, concanavalin A, concanavalin B). A one megapixel Adaptive Gain Integrating Pixel Detector (AGIPD) was used which has not only a high frame rate but also a large dynamic range. This dataset is publicly available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development and for data analysis training for prospective XFEL users.


Assuntos
Concanavalina A/química , Proteínas de Plantas/química , Urease/química , Cristalização , Cristalografia por Raios X
9.
Acta Crystallogr D Struct Biol ; 75(Pt 2): 178-191, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821706

RESUMO

The high peak brilliance and femtosecond pulse duration of X-ray free-electron lasers (XFELs) provide new scientific opportunities for experiments in physics, chemistry and biology. In structural biology, one of the major applications is serial femtosecond crystallography. The intense XFEL pulse results in the destruction of any exposed microcrystal, making serial data collection mandatory. This requires a high-throughput serial approach to sample delivery. To this end, a number of such sample-delivery techniques have been developed, some of which have been ported to synchrotron sources, where they allow convenient low-dose data collection at room temperature. Here, the current sample-delivery techniques used at XFEL and synchrotron sources are reviewed, with an emphasis on liquid injection and high-viscosity extrusion, including their application for time-resolved experiments. The challenges associated with sample delivery at megahertz repetition-rate XFELs are also outlined.


Assuntos
Cristalografia por Raios X/instrumentação , Elétrons , Análise de Injeção de Fluxo/instrumentação , Lasers , Síncrotrons/instrumentação , Animais , Cristalografia por Raios X/economia , Humanos , Proteínas/química , Síncrotrons/economia , Fatores de Tempo , Viscosidade
10.
Acta Crystallogr D Struct Biol ; 74(Pt 10): 1000-1007, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30289410

RESUMO

Crystallography chips are fixed-target supports consisting of a film (for example Kapton) or wafer (for example silicon) that is processed using semiconductor-microfabrication techniques to yield an array of wells or through-holes in which single microcrystals can be lodged for raster-scan probing. Although relatively expensive to fabricate, chips offer an efficient means of high-throughput sample presentation for serial diffraction data collection at synchrotron or X-ray free-electron laser (XFEL) sources. Truly efficient loading of a chip (one microcrystal per well and no wastage during loading) is nonetheless challenging. The wells or holes must match the microcrystal size of interest, requiring that a large stock of chips be maintained. Raster scanning requires special mechanical drives to step the chip rapidly and with micrometre precision from well to well. Here, a `chip-less' adaptation is described that essentially eliminates the challenges of loading and precision scanning, albeit with increased, yet still relatively frugal, sample usage. The device consists simply of two sheets of Mylar with the crystal solution sandwiched between them. This sheet-on-sheet (SOS) sandwich structure has been employed for serial femtosecond crystallography data collection with micrometre-sized crystals at an XFEL. The approach is also well suited to time-resolved pump-probe experiments, in particular for long time delays. The SOS sandwich enables measurements under XFEL beam conditions that would damage conventional chips, as documented here. The SOS sheets hermetically seal the sample, avoiding desiccation of the sample provided that the X-ray beam does not puncture the sheets. This is the case with a synchrotron beam but not with an XFEL beam. In the latter case, desiccation, setting radially outwards from each punched hole, sets lower limits on the speed and line spacing of the raster scan. It is shown that these constraints are easily accommodated.


Assuntos
Cristalografia/instrumentação , Coleta de Dados , Desenho de Equipamento , Análise em Microsséries/métodos , Animais , Monóxido de Carbono/química , Embrião de Galinha , Cristalografia/métodos , Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , Hemoglobina A/química , Humanos , Muramidase/química , Oxiemoglobinas/química , Polímeros , Fatores de Tempo
11.
Nat Commun ; 9(1): 3487, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154468

RESUMO

X-ray free-electron lasers (XFELs) enable novel experiments because of their high peak brilliance and femtosecond pulse duration. However, non-superconducting XFELs offer repetition rates of only 10-120 Hz, placing significant demands on beam time and sample consumption. We describe serial femtosecond crystallography experiments performed at the European XFEL, the first MHz repetition rate XFEL, delivering 1.128 MHz X-ray pulse trains at 10 Hz. Given the short spacing between pulses, damage caused by shock waves launched by one XFEL pulse on sample probed by subsequent pulses is a concern. To investigate this issue, we collected data from lysozyme microcrystals, exposed to a ~15 µm XFEL beam. Under these conditions, data quality is independent of whether the first or subsequent pulses of the train were used for data collection. We also analyzed a mixture of microcrystals of jack bean proteins, from which the structure of native, magnesium-containing concanavalin A was determined.

12.
Sci Data ; 4: 170188, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29231920

RESUMO

We provide a detailed description of a gadoteridol-derivatized lysozyme (gadolinium lysozyme) two-colour serial femtosecond crystallography (SFX) dataset for multiple wavelength anomalous dispersion (MAD) structure determination. The data was collected at the Spring-8 Angstrom Compact free-electron LAser (SACLA) facility using a two-colour double-pulse beam to record two diffraction patterns simultaneously in one diffraction image. Gadolinium lysozyme was chosen as a well-established model system that has a very strong anomalous signal. Diffraction patterns from gadolinium lysozyme microcrystals were recorded to a resolution of 1.9 Å in both colours. This dataset is publicly available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...